Перевод: с русского на все языки

со всех языков на русский

функция выходов

  • 1 функция выходов

    1. output function

     

    функция выходов
    Зависимость значений выходных координат последовательностного дискретного объекта от значений его входных и внутренних координат.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > функция выходов

  • 2 функция выходов

    Rare: output function (зависимость значений выходных координат последовательностного дискретного объекта от значений его входных и внутренних координат. См. Теория управления. Терминология. Вып. 107. М.: Наука, 1988)

    Универсальный русско-английский словарь > функция выходов

  • 3 прикладное программное обеспечение

    1. application software

     

    прикладное программное обеспечение
    Программы, занимающиеся обработкой пользовательских данных, например офисные программы, бизнес-программы, программы для работы с графикой и т.д.
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    3.4 прикладное программное обеспечение (application software): Часть программного обеспечения системы контроля и управления, которая обеспечивает выполнение прикладных функций.

    [МЭК 61513, пункт 3.2]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.2 прикладное программное обеспечение (application software): Часть программного обеспечения системы контроля и управления, которое обеспечивает выполнение прикладных функций (см. рисунок 2).

    Примечание 1 - См. также «прикладная функция», «библиотека прикладных программ», «системное программное обеспечение системы».

    Примечание 2 - Прикладное программное обеспечение отличается от системного.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.23 прикладное программное обеспечение (application software): Специальное программное обеспечение, предназначенное для применения в системе SRECS, содержащее логические последовательности, пределы и выражения для управления соответствующими выходами, а также решения, необходимые для выполнения системой SRECS своих функций (см. ЕН 62061, пункт 3.2.46).

    Примечание - Для примера - программа для PLC, обеспечивающая безопасность при работе на станке.

    Источник: ГОСТ Р ЕН 1870-1-2011: Безопасность деревообрабатывающих станков. Станки круглопильные. Часть 1. Станки круглопильные универсальные (с подвижным столом и без), станки круглопильные форматные и станки круглопильные для строительной площадки

    3.25 прикладное программное обеспечение (application software): Особое программное обеспечение для специального применения, содержащее логические последовательности, пределы и выражения для контроля соответствующих вводов, выходов, расчетов и решений, необходимых для выполнения функциональных требований системы SRECS согласно ЕН 62061 (пункт 3.1.36).

    Примечание - Например, программа SRECS как часть системы управления для безопасной эксплуатации станка.

    Источник: ГОСТ Р ЕН 940-2009: Безопасность деревообрабатывающих станков. Станки комбинированные деревообрабатывающие

    3.2.21 прикладное программное обеспечение (application software): Специальное программное обеспечение, предназначенное для применения в системе SRECS, содержащее логические последовательности, пределы и выражения для управления соответствующими выходами, а также решения, необходимые для выполнения системой SRECS своих функций (см. ЕН 62061, пункт 3.2.46).

    Примечание - Например: программа для PLC, обеспечивающая работу станка.

    Источник: ГОСТ Р ЕН 848-1-2011: Безопасность деревообрабатывающих станков. Станки фрезерные односторонние. Часть 1. Станки фрезерные одношпиндельные с вертикальным нижним расположением шпинделя

    3.2.14 прикладное программное обеспечение (application software): Особое программное обеспечение для специального применения, выполненное главным проектировщиком системы SRECS.

    Примечание 1 - В основном оно содержит логические последовательности, пределы и выражения для контроля соответствующих входов, выходов, расчетов и решений, необходимых для выполнения функциональных требований SRECS согласно ЕН 62061 (пункт 3.2.46).

    Примечание 2 - Пример - программа SRECS как часть системы управления для безопасной эксплуатации станка.

    Источник: ГОСТ Р ЕН 859-2010: Безопасность деревообрабатывающих станков. Станки фуговальные с ручной подачей

    3.2.17 прикладное программное обеспечение (application software): Особое программное обеспечение для специального применения, выполненное главным проектировщиком системы SRECS.

    Примечание 1 - В основном оно содержит логические последовательности, пределы и выражения для контроля соответствующих входов, выходов, расчетов и решений, необходимых для выполнения функциональных требований SRECS согласно ЕН 62061 (пункт 3.1.36).

    Примечание 2 - Пример - программа SRECS как часть системы управления для безопасной эксплуатации станка.

    Источник: ГОСТ Р ЕН 860-2010: Безопасность деревообрабатывающих станков. Станки рейсмусовые односторонние

    3.2.19 прикладное программное обеспечение (application software): Специальное программное обеспечение, предназначенное для применения в системе SRECS, содержащее логические последовательности, пределы и выражения для управления соответствующими выходами, а также решения, необходимые для выполнения системой SRECS своих функций (см. ЕН 62061, пункт 3.2.46).

    Источник: ГОСТ Р ЕН 861-2011: Безопасность деревообрабатывающих станков. Станки фуговально-рейсмусовые

    Русско-английский словарь нормативно-технической терминологии > прикладное программное обеспечение

  • 4 аналитическая модель

    1. analytical model

     

    аналитическая модель
    Формула, представляющая математические зависимости в экономике и показывающая, что результаты (выходы) находятся в функциональной зависимости от затрат (входов). В самом общем виде ее можно записать так: U = f(x). Здесь x — совокупность (вектор) выходов, f — функция, которая в случае, если она известна, может быть раскрыта в явной форме. В моделях оптимизационных (а их большинство в экономико-математических исследованиях, в исследовании операций и т.д.) отыскивается такой вектор переменных xi (i — «номер» из числа рассматриваемых векторов), при котором критерий, характеризующий качество функционирования системы — обычно это скаляр, а не вектор — получает наибольшее или наименьшее значение (либо вообще достигает какого-то желательного уровня). Это записывается, например, для первого случая (максимизации) так: u = f (xi,yi) ? max. Здесь yi — переменные, не поддающиеся управлению, но влияющие на u; f — функция, задающая отношения между всеми указанными величинами. Если она известна, то может быть найдено аналитическое решение данного уравнения.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > аналитическая модель

  • 5 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 6 связка

    Русско-английский большой базовый словарь > связка

  • 7 цель

    1. target
    2. objective
    3. goal

     

    цель
    Конечные результаты работы процесса, деятельности или организации, определяющие их соответствие назначению. Цели обычно выражают в измеримых показателях. Термин «цель» также неформально используется для обозначения требования.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    цель
    (в экономической кибернетике, системном анализе) — желаемое состояние выходов системы (конечное состояние) в результате управляемого процесса ее развития. Она устанавливается блоком определения Ц., входящим в управляющую подсистему. Состояния системы (как и ее траектории) оцениваются с точки зрения их соответствия или несоответствия цели. Математическим выражением (моделью) такой оценки является целевая функция или критерий качества системы (в случае оптимизации системы — критерий оптимальности). Конкретная Ц. задачи управления, плана развития экономической системы и т.п. становится объектом рассмотрения тогда, когда есть проблема, т.е. — расхождение желаемого и действительного. Однако действительное определение Ц. — что важно — зависит не только от желания (субъективная сторона), но и от реальных возможностей. Диалектика объективного и субъективного лежит в основе целеполагающей деятельности человека и общества. При управлении развитием сложных целенаправленных систем, как правило, устанавливается иерархия целей (см. Программно-целевой метод планирования и управления), причем достижение более конкретных из них (подцелей) служит средством реализации более общих. Критерии подцелей показывают ту степень, с которой соответствующие действия способствуют достижению общих Ц.
    [ http://slovar-lopatnikov.ru/]

    EN

    objective
    The outcomes required from a process, activity or organization in order to ensure that its purpose will be fulfilled. Objectives are usually expressed as measurable targets. The term is also informally used to mean a requirement.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    2.42 цель (target): Ресурс, к которому субъект запрашивает доступ.

    Примечание - Важность цели моделируется в настоящем стандарте как набор атрибутов, представленных либо атрибутами в нотации ASN.1, либо элементами XML.

    Источник: ГОСТ Р ИСО/ТС 22600-2-2009: Информатизация здоровья. Управление полномочиями и контроль доступа. Часть 2. Формальные модели

    3.26 цель (target): Персонал, транспортные средства, товары, активы, процессы производства и обработки, системы управления или документооборота в рамках организации - участника цепи поставок.

    Источник: ГОСТ Р 53662-2009: Система менеджмента безопасности цепи поставок. Наилучшие методы обеспечения безопасности цепи поставок. Оценки и планы оригинал документа

    4.11 цель (goal): Намеченный результат.

    [ИСО 9241-11:1998, определение 3.8]

    Примечание - Цель не зависит от функциональных средств, используемых для ее достижения.

    Источник: ГОСТ Р 55236.2-2012: Эргономика изделий повседневного использования. Часть 2. Метод испытаний изделий с интуитивно понятным управлением оригинал документа

    3.14 цель (target): Персонал, суда, груз, объекты инфраструктуры, материальные ценности и системы управления/документирования в пределах портового средства.

    Источник: ГОСТ Р 53660-2009: Суда и морские технологии. Оценка охраны и разработка планов охраны портовых средств оригинал документа

    3.50 цель (objective): Констатация предпочтения в отношении возможных и достижимых в будущем ситуаций, которая влияет на выбор в рамках определенного поведения.

    Примечание - Заимствовано из ИСО/МЭК 15414:2002.

    Источник: ГОСТ Р ИСО 19439-2008: Интеграция предприятия. Основа моделирования предприятия оригинал документа

    4.11 цель (goal): Намеченный результат.

    [ИСО 9241-11:1998, определение 3.8]

    Примечание - Цель не зависит от функциональных средств, используемых для ее достижения.

    Источник: ГОСТ Р 55236.3-2012: Эргономика изделий повседневного использования. Часть 3. Метод испытаний потребительских товаров оригинал документа

    3.164 цель (objective): Заявление о предпочтительности возможных и достижимых будущих ситуаций, влияющих на варианты выбора в пределах некоторого типа поведения.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > цель

См. также в других словарях:

  • функция выходов — Зависимость значений выходных координат последовательностного дискретного объекта от значений его входных и внутренних координат. [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно технической… …   Справочник технического переводчика

  • функция выходов — Зависимость значений выходных координат последовательностного дискретного объекта от значений его входных и внутренних координат …   Политехнический терминологический толковый словарь

  • ОГРАНИЧЕННО-ДЕТЕРМИНИРОВАННАЯ ФУНКЦИЯ — словарная функция, характеризующая поведение автомата конечного. (Функция наз. словарной, если областью определения и областью значений ее являются множества слов или сверхслов.) Если А какой либо алфавит, то пусть обозначает множество всех слов …   Математическая энциклопедия

  • АВТОМАТ КОНЕЧНЫЙ — математическая модель устройства с конечной памятью, преобразующего дискретную информацию. А. к. является одним из важнейших видов управляющих сиcтем. Содержательно А. к. можно охарактеризовать как устройство, имеющее входной и выходной каналы и… …   Математическая энциклопедия

  • АВТОМАТ — управляющая система, являющаяся автоматом конечным или некоторой его модификацией, полученной путем изменения компонент или функционирования. Основное понятие конечный А. возникло в середине 20 в. в связи с попытками описать на математическом… …   Математическая энциклопедия

  • Классификация абстрактных автоматов — Содержание 1 Классификация автоматов по логическим свойствам функций переходов и выходов 1.1 …   Википедия

  • Абстрактный автомат — (в теории алгоритмов) математическая абстракция, модель дискретного устройства, имеющего один вход, один выход и в каждый момент времени находящегося в одном состоянии из множества возможных. На вход этому устройству поступают символы одного… …   Википедия

  • Автомат Мура — (автомат второго рода) в теории вычислений конечный автомат, выходное значение сигнала в котором зависит лишь от текущего состояния данного автомата, и не зависит напрямую, в отличие от автомата Мили, от входных значений. Автомат Мура назван …   Википедия

  • устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны …   Словарь-справочник терминов нормативно-технической документации

  • Метод обратного распространения ошибки — (англ. backpropagation) метод обучения многослойного перцептрона. Впервые метод был описан в 1974 г. А.И. Галушкиным[1], а также независимо и одновременно Полом Дж. Вербосом[2]. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж …   Википедия

  • HDCP — Не следует путать с DHCP. У этого термина существуют и другие значения, см. HD. Работа с оптическими дисками Оптический диск Образ оптического диска, ISO образ Эмулятор оптических дисководов Программное обеспечение для работы с файловыми… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»